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A B S T R A C T   

There is a class of data-driven global natural hazard predictive models that take advantage of broadly available 
geospatial proxies. These data-driven geospatial models have been commonly used for landslides and are 
becoming more available in recent years for liquefaction. Logistic regression is the most common method for 
predicting these ground failure occurrences. These models do not often include robust quantification of un-
certainties although they are widely used in the pre-disaster planning and post-disaster response around the 
world. Taking the logistic regression based global geospatial liquefaction model (GGLM) (Zhu et al., 2017) as an 
example, we propose an uncertainty quantification (UQ) framework that consists of characterization of different 
sources of uncertainty, model sensitivity analysis, and forward uncertainty propagation. In this study, we have 
identified the main sources of uncertainty in such predictive models as parameter estimation uncertainty, 
modeling error, and geospatial input uncertainty. A Bayesian inference algorithm is used to quantify the pos-
terior distribution of model parameters and quantify model parameter estimation uncertainties which are found 
to be negligible when a large amount of data is used in the parameter estimation process. Modeling errors are 
characterized based on the observed residuals between model predictions and measurements and by fitting a 
Gaussian distribution to the liquefaction probability residuals. The geospatial input uncertainties are charac-
terized using the literature and expert judgment and propagated into model output. Second, we investigate the 
sensitivity of model output to different uncertain inputs and find that the variance of model output is largely 
controlled by the geospatial input uncertainties and model errors. Last, we propose an approximate forward 
uncertainty propagation method, which provides comparable results to a Monte Carlo simulation-based method 
with better computational efficiency. The proposed UQ framework provides a measure of uncertainty on model 
predictions and can be applied to any logistic-regression models and other geospatial modeling problems.   

1. Introduction 

Since 1990, natural hazards have led to over 1.6 million fatalities 
globally, and the economic losses are estimated at an average of around 
260–310 billion USD per year (UNDRR, 2015). With the advancements 
in remote sensing techniques and geospatial big data, data-driven 
models play an important role in natural hazard risk management. 
The scientific, insurance, and policy communities have developed many 
data-driven models to characterize and map hazard in terms of proba-
bility of occurrence at the regional or global scales, using geospatial 
proxies hereinafter called geospatial natural hazard models (GNHMs). 
However, uncertainties are pervasive in GNHMs due to the intrinsic 
variability of natural hazards and geologic processes, missing or 

erroneous data, resolution and scale, parameter estimation uncertainty, 
model-based or structural uncertainty, and knowledge gaps, among 
other factors (Riley et al., 2016). When these uncertainties propagate 
into risk models, the uncertainty can have a significant impact; there-
fore, quantifying and reducing uncertainty in natural hazard modeling 
are important for risk modeling. 

Geospatial natural hazard models can be broadly grouped into 
physics-based models and data-driven models. Physics-based models use 
governing equations to describe the physics of natural hazard and model 
the spatiotemporal evolution of natural hazards, such as earthquake 
(Taborda and Bielak, 2011), tsunami (Furumura et al., 2011), landslide 
(Feng et al., 2022), and wildfire (Finney et al., 2011). These physics- 
based models, once calibrated, can be used to simulate different 
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hazard scenarios which make them particularly useful in probabilistic 
risk planning. Many data-driven natural hazard models take advantage 
of broadly available geospatial proxies and geospatial natural hazard 
occurrence data and use statistical learning or machine learning to 
predict natural hazard occurrence (Totschnig and Fuchs, 2013; Eidsvig 
et al., 2014; Zhu et al., 2015; Zhu et al., 2017; Fan et al., 2018; Lombardo 
and Mai, 2018; Lin et al., 2021; Lu et al., 2022). Natural hazard occur-
rence is represented as a binary process, whereas, the geospatial proxies 
are often continuous variables, and sometimes categorical variables. 
Despite the lack of physical interpretation for regression-based function 
form, geospatial natural hazard models can show equivalent or better 
performance when compared to physics-informed models (e.g., Geyin 
et al., 2020). 

Systematical uncertainty quantification for data-driven natural 
hazard models has been less explored than physics-based ones. As in 
introduction to a book on natural hazard uncertainty assessment, Riley 
et al. (2016) provides a survey of emerging techniques in assessment of 
uncertainty in natural hazard modeling. As natural hazards can be 
affected by many factors, sensitivity analysis is useful to identify key 
factors driving the natural hazard phenomenon and provides insight for 
model optimization. In the same volume, Thompson and Warmink 
(2016) provide a general framework for identifying and classifying un-
certainties in natural hazard modeling, which highlights the importance 
of a transparent and systematic identification of uncertainties to guide 
subsequent modeling and decision processes. More specifically, Ujjwal 
et al. (2020) provide a cloud-based framework for sensitivity analysis of 
natural hazards with large-scale wildfire simulations as the use case. 

Inspired by UQ frameworks used in scientific computing (Marelli and 
Sudret, 2014), we aim to provide a general UQ framework for data- 
driven geospatial natural hazard modeling. The geospatial global 
liquefaction hazard model (GGLM) developed by Zhu et al. (2017) using 
logistic regression is used to demonstrate the UQ framework, and the 
model details are described in Section 2. The UQ framework includes 
three components: identify and quantify different sources of uncertainty 
(Section 3), sensitivity analysis showing the main sources that 
contribute to output variability (Section 4), and forward uncertainty 
propagation demonstrating how uncertainty affects the probabilistic 
prediction of the natural hazard (in this case liquefaction) at both site 
and regional scales (Section 5). The main findings and some implications 
of the UQ framework on natural hazard modeling are summarized in 
Section 6. 

2. Overview and modifications of the GGLM 

Soil liquefaction is one of the secondary hazards caused by earth-
quake shaking and can cause ground failure and severe structural 
damages (Tokimatsu et al., 2012; Van Ballegooy et al., 2014). Lique-
faction susceptibility is known to be correlated with surficial geology in 
terms of age and depositional environment (Youd and Perkins, 1978), 
geomorphology (Matsuoka et al., 2015), and soil saturation as described 
by distance to river or height above surface water (Zhu et al., 2015). 
These known correlations provided the basis for developing different 
geospatial liquefaction hazard models for regional liquefaction suscep-
tibility mapping (e.g., Zhu et al., 2015; Zhu et al., 2017; Kim et al., 2018; 
Bozzoni et al., 2021; Todorovic and Silva, 2022). Zhu et al. (2015) and 
Zhu et al. (2017) developed geospatial liquefaction hazard models using 
geospatial proxies for soil density and soil saturation and integrated 
earthquake-specific ground shaking intensity measures into geospatial 
liquefaction hazard modeling. As these ground shaking intensity mea-
sures can be estimated quickly after the earthquake occurrence by the 
United States Geological Survey (USGS) ShakeMap (Worden et al., 
2020), this type of geospatial liquefaction hazard model can be used in 
near-real-time hazard response and loss estimation. The Zhu et al. 
(2017) geospatial liquefaction hazard models use liquefaction observa-
tion data from 27 earthquakes across six countries. One model shows 
more promising results in coastal regions (“model 1” in Zhu et al., 2017) 
and another one shows more promising results in noncoastal regions 
(“model 2” in Zhu et al., 2017). These two models are called global 
geospatial liquefaction hazard models as they use globally available 
geospatial proxies as inputs and therefore they can be implemented 
globally. The noncoastal model in Zhu et al. (2017) has been used as the 
primary liquefaction model in the USGS near-real-time ground failure 
product (Allstadt et al., 2022). The overall performance and regional 
efficacy of the global geospatial liquefaction model are discussed in 
Rashidian and Baise (2020). 

To illustrate the proposed UQ framework, this study will quantify 
uncertainty of the primary global geospatial liquefaction model (i.e., 
“model 2” in Zhu et al., 2017), hereinafter termed as GGLM. The GGLM 
predicts the probability of liquefaction occurrence (i.e., a categorical 
variable describing the liquefaction surface manifestation) using five 
geospatial proxies, peak ground velocity (PGV) estimated by the USGS 
ShakeMap, the averaged shear wave velocity within the top 30 m ground 
(VS30), mean annual precipitation (precip), distance to the nearest water 
body (dw), and ground water table depth (wtd). The function form of the 
GGLM is the widely used logistic function and the model parameters are 
trained from a liquefaction database collected from 27 earthquakes 
across six countries (see Eq. 1). 

f (x) = P(y = 1) =
1

1 + e− Z(x), (1)  

where P(y = 1) is the probability of liquefaction occurrence; y is the 
liquefaction observation (1 for liquefaction, 0 for non-liquefaction); 

1
1+e− Z(x) is the logistic regression function; x is the vector of explanatory 
variables (geospatial proxies in geospatial natural hazard models); and Z 
is a function of explanatory variables. The GGLM uses a linear combi-
nation of explanatory variables as shown in Eq. (2). 

Z
(x) =w0 +w1 × ln(PGV)+w2 × ln(Vs30)+w3 × ln(precip)+w4 × ln(dw)

+w5 × ln(wtd),
(2)  

where PGV is the peak ground velocity (cm/s); VS30 is the time-averaged 
shear wave velocity to a depth of 30 m, which is estimated using the 
slope-based VS30 model (Wald and Allen, 2007); precip is the mean 
annual precipitation (mm) from the WordClim database (https://world 
clim.org/); dw is the distance to nearest water body (km) computed from 
the Hydro-SHEDS (https://www.hydrosheds.org/); wtd is the water 

Fig. 1. Receiver Operating Curve of the old GGLM (Zhu et al., 2017) and the 
new GGLM using all log-transformed explanatory variables as inputs. 
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table depth extracted from the global water table depth map (m) (Fan 
et al., 2013); and w0, w1, …, w5 are the regression coefficients. 

In order to facilitate the application of the UQ framework, we apply 
log-transformation to all geospatial explanatory variables, instead of 
only transforming PGV and VS30 (see Table 3 in Zhu et al., 2017) and 
reoptimize the regression coefficients. The consistent variable trans-
formations are beneficial for the Bayesian inference and forward un-
certainty propagation as it results in similar magnitude and a common 
distribution. The variable transformations do not significantly affect the 
model classification accuracy as demonstrated by the area under 
receiver operating characteristic curve (AUC) of models in Fig. 1. The 
Brier score of the updated GGLM is 0.181 instead of 0.167 in Zhu et al. 
(2017). 

3. Uncertainty quantification for GGLM 

Geospatial natural hazard models intrinsically involve different 
types of uncertainties. In this framework, we identify three types of 
uncertainty sources: parameter estimation uncertainty, modeling errors, 
and geospatial input uncertainty. In this section, we quantify (1) esti-
mation uncertainty of model parameters through a Bayesian inference 
framework, (2) modeling error by fitting a distribution to the observed 
model prediction residuals, and (3) geospatial explanatory variables 
from past studies or engineering judgment. 

3.1. Bayesian inference for quantifying parameter estimation uncertainty 

Under the UQ framework, we treat model parameters as random 
variables and use the Bayes’ theorem to estimate the posterior proba-
bility distribution of model parameters. 

p(w|D) =
p(D|w)p(w)

p(D)
∝p(D|w)p(w), (3)  

where w is the vector of model parameters to be estimated; D is the 
vector of available data, i.e., paired geospatial inputs X and liquefaction 
observation y; p(w|D) is the posterior distribution of model parameters; 
p(D|w) is the likelihood function as shown in Eq. (4); p(w) is the prior 
probability distribution of the model parameters; and p(D) =

∫

p(D|w)p(w)dw is the evidence which is a normalization constant so the 
probability of the parameters sums to one. 

p(D|w) =
∏N

n=1
pyn

n (1 − pn)
1− yn , (4) 

In Eq. (4), N is the sample size; n is the sample id ranging from 1 to N; 
pn = 1

1+e− Z(x) is the liquefaction probability for sample n predicted using 

the logistic function; and yn is the liquefaction observation for sample n 
(yn = 1 for liquefaction and yn = 0 for nonliquefaction. 

As the solution of posterior distribution of model parameters for 
logistic regression is intractable (Bishop and Nasrabadi, 2006), we use 
the Laplace approximation method to estimate p(w|D). Laplace 
approximation aims to find a Gaussian approximation to the posterior 
probability density defined over a set of continuous variables (Bishop 
and Nasrabadi, 2006). We assume a Gaussian distribution for the model 
parameter prior with the general form as shown in Eq. (5). 

p(w) = N(w|m0,S0) (5)  

where m0 and S0 are the mean vector and covariance matrix of the model 
parameters, respectively. 

Taking the log of both sides in Eq. (3), and substituting Eq. (4) for the 
likelihood function, and Eq. (5) for the prior distribution, we obtain the 
posterior distribution (Bishop and Nasrabadi, 2006): 

lnp(w|D)=−
1
2
(w − m0)

T S− 1
0 (w − m0)+

∑N

n=1
{ynlnpn +(1 − yn)ln(1 − pn)}

+constant,
(6) 

To obtain a Gaussian approximation for the posterior distribution, 
we first find the maximum-a-posteriori (MAP) estimate wMAP as the 
maximum of Eq. 6, which defines the mean of the posterior distribution. 
The covariance matrix is then estimated as the inverse of the Hessian 
(second derivative) of the negative log likelihood, which takes the form 

SN = − ∇∇lnp(w|D) = S− 1
0 +

∑N

n=1
pn(1 − pn)xnxT

n , (7) 

The Gaussian approximation to the posterior distribution therefore 
takes the form 

q(w) = N(w|wMAP,SN), (8) 

The prior distribution uses zero means for all the model parameters, 
and standard deviation of 100. In that way, the prior distribution is flat, 
which indicates an uninformative prior distribution. The Laplace 
approximation is then used to estimate the joint posterior distribution of 
model parameters. The pairwise correlations between model parameters 
are estimated using the SN by converting the covariance matrix to cor-
relation matrix. 

The mean, standard deviation, and coefficient of variation (COV) of 
the GGLM model parameters are summarized in Table 1. The model 
parameters show small estimation uncertainty, with the maximum ab-
solute value of COV being 2.6% (for ln(precip) and ln(wtd)), not 
exceeding 1.0% for the remaining model parameters. The pairwise 
correlations between the model parameters of GGLM are shown in 
Table 2. Two model parameters (ln(VS30) and ln(wtd)) have strong cor-
relations with intercept, and ln(VS30) also shows a strong negative cor-
relation with ln(wtd). The positive parameter correlation means the 
model parameter tends to increase with the increase of another model 
parameter, and vice versa (Li and Vu, 2013). Statistically, the maximum 
likelihood fitting (Eq. 4) cannot guarantee unique parameter estimation, 
due to correlations among the parameters. The correlation can be 
explained by the physical background of liquefaction phenomena. For 
instance, the site stiffness (VS30) and water table depth (wtd) can affect 
the soil liquefaction susceptibility jointly. In short, the Bayesian infer-
ence results suggest the GGLM tend to have low parameter estimation 
uncertainty. 

3.2. Residual analyses for quantifying modeling error 

3.2.1. Modeling error 
Modeling errors are due to imperfections of the simplified statistical 

models in representing complex natural hazard phenomena and 
inherent randomness of geophysical processes. For geospatial natural 
hazard models with continuous outputs (i.e., regression models), such as 

Table 1 
Parameter estimation uncertainty of the geospatial liquefaction hazard model.  

Coefficients Intercept wln(PGV) wln(VS30) wln(precip) wln(dw) wln(wtd) 

Mean 6.731 0.279 − 1.459 0.167 − 0.695 − 0.130 
Std 0.067 0.003 0.013 0.004 0.004 0.003 
COV (%) 1.0 1.0 − 0.9 2.6 − 0.6 − 2.6  

Table 2 
Correlation matrix for the model parameters of the geospatial liquefaction 
hazard model.  

Correlation Intercept wln(PGV) wln(VS30) wln(precip) wln(dw) wln(wtd) 

Intercept 1.00 − 0.02 − 0.88 − 0.24 0.11 0.70 
wln(PGV)  1.00 − 0.14 0.08 − 0.06 0.09 
wln(VS30)   1.00 − 0.23 − 0.14 − 0.80 
wln(precip)    1.00 − 0.01 0.16 
wln(dw)     1.00 0.06 
wln(wtd)      1.00  
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earthquake ground-motion models (Boore et al., 2014), the modeling 
errors can be defined as the differences between the observed and pre-
dicted hazard intensities. However, for geospatial models with cate-
gorical target variables (i.e., classification models), the modeling errors 
are not easily defined (Liu and Zhang, 2018). Here, we quantify the 
modeling errors of GGLM in the space of liquefaction probability. Spe-
cifically, the model residuals of the GGLM are defined as the differences 
of empirical and theoretical liquefaction probabilities which are both 
conditional on the Z value. 

ϵ(Z) = P(Z)empi − P(Z)theo, (9)  

where ϵ is the liquefaction probability residual which is considered as 

modeling error; P(Z)empi is the empirical (observed) liquefaction proba-
bility which is computed as the ratio of the liquefaction sample size to 
the total sample size for each Z value bin; and P(Z)theo is the theoretical 
(predicted) liquefaction probability which is computed using Eq. (1). 

3.2.2. Global residual model 
The relationship between the empirical and theoretical liquefaction 

probabilities is shown in Fig. 2. The empirical liquefaction probabilities 
are represented for different Z bins based on the corresponding proxies 
of observed locations, and they match well with the theoretical ones for 
samples with Z ∈ [ − 2.2,1.4] (i.e., P(Z)theo ∈ [0.1, 0.8]). It is noted that 
the observed liquefaction probabilities deviate from the predicted 
liquefaction probabilities at the low and high Z values, which is likely 
due to insufficient sample size at these bins for calculating empirical 
liquefaction probabilities. We use 150 as the threshold sample size per 
bin to exclude outlier bins based on the relationship between liquefac-
tion probability residuals and the sample size per bin (Fig. 2b). 

The liquefaction probability residuals show different patterns at 
varying Z values (Fig. 3). The GGLM consistently overestimates the 
liquefaction probability at the very low Z value range (Z < − 2.2) where 
the empirical liquefaction probabilities are zero except for a few 
abnormal high values due to insufficient sample size. At the very-high Z 
value range (Z > 1.4), the model also tends to have a smaller number of 
reliable estimations of empirical liquefaction probability. For the middle 

Fig. 2. (a) Comparison between empirical (circles) and theoretical (red curve) liquefaction probabilities. The empty circles indicate bins with sample size <150. The 
histogram shows the number of liquefaction and non-liquefaction samples. The vertical dashed lines constrain the data range with sufficient sample size for 
computing empirical liquefaction probability. (b) The correlation between liquefaction probability residuals and sample size per bin. The vertical dashed line in-
dicates sample size for reliable estimation of empirical liquefaction probability. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. (a) Relationship between the liquefaction probability residuals and the Z value. The circles with no fill have insufficient samples to estimate empirical 
liquefaction probability (i.e., the sample size is <150). The blue squares are binned means of liquefaction probability residuals. (b) Histogram of the liquefaction 
probability residuals. The red line is the theoretical probability density function for the Gaussian distribution with mean of zero and standard deviation of 0.06. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Proposed mean and modeling error forms of the considered GGLM after the 
residual analyses.  

Stage Applicable range P(y = 1) ϵ 

1 Z < − 2.2 0.05 Assumed N(0, 0.06)* 

2 − 2.2 ≤ Z ≤ 1.4 1
1 + e− Z(x)

N(0, 0.06) 

3 Z > 1.4 0.80 Assumed N(0, 0.06)  

* N(μ,σ) denotes the Gaussian distribution where μ is the mean and σ is the 
standard deviation. 
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Z value range (Z ∈ [ − 2.2, 1.4]), the liquefaction probability residuals 
have slightly higher variability for negative Z values than for positive 
values but generally follow a Gaussian distribution as shown in Fig. 3b. 
In this study, we represent the liquefaction probability residuals as a 
Gaussian distribution with mean of zero (as the fitting process is unbi-
ased) and standard deviation of 0.06 (Fig. 3b). Based on the residual 
analyses, we propose conditional mean and residual models for global 
application of the GGLM (Table 3) which is basically a truncated 
Gaussian distribution model. For locations with Z between − 2.2 to +1.4, 
mean estimate of liquefaction probability is the direct output of the lo-
gistic regression model (see Eqs. 1 and 2) while modeling error is rep-
resented by the fitted Gaussian distribution in Fig. 3b. For locations with 
Z < − 2.2, we recompute the empirical liquefaction probability as the 
ratio of the number of the liquefaction samples with Z < -2.2 to the total 
number of samples with Z < -2.2, and assign this empirical probability 
value (i.e., 0.05) as the mean estimate of liquefaction probability with Z 
< -2.2. For locations with Z > 1.4, we assign the mean estimate of 
liquefaction probability as 0.8 using the similar method but removing 
the samples from several outlier Z bins. We assume the residual models 
for the locations with insufficient samples (i.e., Z < -2.2 and Z > 1.4) fit 
the same Gaussian distribution calibrated using the main part of dataset 
(Fig. 3b) although we do not have enough reliable data to calibrate 
them. It is noted that our residual analyses also contribute to cap the 
predicted liquefaction probability. 

Table 4 
Summary of residual models for different earthquakes.  

Earthquake name Year Region Mw nsamples Zmin Zmax bias std 

Chiba 1987 Japan 6.5 100,000 − 1.5 1.2 − 0.03 0.09 
Kobe 1995 Japan 6.9 100,000 − 1.5 1.5 − 0.20 0.14 
Tohoku 2011 Japan 9.1 100,000 − 1.8 1.5 − 0.03 0.11 
Niigata1964 1964 Japan 7.6 100,000 − 2.2 1.2 − 0.07 0.10 
Nihonkai 1983 Japan 7.7 100,000 − 1.5 1.2 0.02 0.10 
Niigata2004 2004 Japan 6.6 100,000 − 2.5 1.4 0.02 0.08 
Darfield 2010 New Zealand 7.0 100,000 − 2 1.2 0.00 0.07 
Christchurch 2011 New Zealand 6.1 100,000 − 2 1.4 0.03 0.11 
Loma Prieta 1989 USA 6.9 79,800 − 1.6 1.4 − 0.13 0.19 
Hokkaido 1993 Japan 7.7 74,200 − 2 0.8 0.12 0.09 
Chichi 1999 Taiwan 7.6 41,500 − 2 1.4 0.00 0.14 
Tottori 2000 Japan 6.7 40,600 − 1.2 1.4 − 0.09 0.17 
Pugetsound1965 1965 USA 6.7 12,100 − 2.4 1.0 0.12 0.21 
Pugetsound1949 1949 USA 6.9 9200 − 2.1 1.0 0.07 0.18 
Tokachi 2003 Japan 8.3 8100 − 1.8 1.2 − 0.03 0.22 
Wenchuan 2008 China 7.9 6900 − 2.8 0.85 0.09 0.25 
Miyagi 1978 Japan 7.6 4700 − 0.1 1.3 − 0.24 0.26 
Nisqually 2001 USA 6.8 2900 − 1.5 0.6 − 0.08 0.31 
Northridge 1994 USA 6.6 2200 − 2.55 0.4 0.13 0.31 
San Simeon 2003 USA 6.6 1100 − 0.37 0.25 − 0.07 0.39  

Fig. 4. Summary of liquefaction probability residuals for different earthquakes. 
The size of circles indicates the sample size per earthquake. The colors indicate 
different regions. The dashed lines indicate the bias and standard deviation of 
liquefaction probability residuals for the global dataset. 

Fig. 5. Liquefaction probability residual model for the 2010 Darfield Earthquake: (a) comparison between empirical and theoretical liquefaction probabilities; and 
(b) relationship between liquefaction probability residuals and Z values. Empty circles indicate data with insufficient sample for estimating empirical liquefaction 
probability. 
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3.2.3. Earthquake-specific residual models 
The GGLM is developed using liquefaction data from worldwide 

earthquakes. Zhu et al. (2017) evaluate the regional difference of the 
model performance using the AUC for different earthquakes. Here, we 
investigate the regional difference of GGLM performance using the re-
sidual analysis with earthquake-specific datasets. The earthquake- 
specific liquefaction probability residual models are summarized in 
Table 4. The Zmin and Zmax show the usable minimum and maximum Z 
values, respectively, which are decided based on the figures comparing 
the empirical and theoretical liquefaction probabilities (available in the 
electronic supplement to this paper). The bias is the mean value of fitted 
Gaussian distribution to the event specific residuals, indicating the 
overall offset of liquefaction probability estimation for that event. The 
standard deviation (std) indicates the variability of liquefaction proba-
bility residuals around their mean values. 

The bias and variability of earthquake-specific liquefaction proba-
bility residuals are shown in Fig. 4. According to Fig. 4, earthquakes with 
a large number of samples used in training tend to have lower bias and 

variability. Most of these earthquakes occurred in data-rich regions, 
such as Japan, New Zealand, and Taiwan. The model was best- 
performing for the 2010 Darfield earthquake, with zero bias and a 
standard deviation of 0.07 as shown in Fig. 5, which are similar to the 
statistics on the global dataset. The 1993 Hokkaido earthquake has small 
variability (0.09) while showing a large positive bias (0.12) as shown in 
Fig. 6, which indicates the GGLM underestimates liquefaction proba-
bility at this earthquake. The 1989 Loma Prieta Earthquake shows large 
negative bias (− 0.13) and variability (0.19) as shown in Fig. 7, related to 
severe overestimation of liquefaction probability at the middle Z value 
range. It is noted that many of the earthquake-specific residual models 
involve large uncertainty as those earthquakes with low numbers of 
samples generally lead to large residuals. This residual analysis provides 
a quantitative way to evaluate model performance and provide insight 
for modeling errors for specific earthquakes. 

3.3. Geospatial Input uncertainty 

Geospatial inputs for the liquefaction model are extracted from 
geospatial proxy maps. Geospatial proxies are derived from a mix of 
observations and empirical or physics-based models; and have varying 
levels of detail about their uncertainty. In this work, we assume all 
geospatial proxies used in the GGLM are random variables following 
lognormal distribution, which is widely assumed for the non-negative 
engineering parameters. The log-transformed geospatial proxies fit the 
Gaussian distribution with mean values from the corresponding geo-
spatial proxy maps and standard deviation values from Table 5. PGV is 
the only geospatial proxy used in this study that has reported 

Fig. 6. Liquefaction probability residual model for the 1993 Hokkaido Earthquake: (a) comparison between empirical and theoretical liquefaction probabilities; and 
(b) relationship between liquefaction probability residuals and Z values. Empty circles indicate data with insufficient sample for estimating empirical liquefaction 
probability. 

Fig. 7. Liquefaction probability residual model for the 1989 Loma Prieta Earthquake: (a) comparison between empirical and theoretical liquefaction probabilities; 
and (b) relationship between liquefaction probability residuals and Z values. Empty circles indicate data with insufficient sample for estimating empirical liquefaction 
probability. 

Table 5 
Summary of geospatial input uncertainties.  

Input Standard deviation Reference 

ln(PGV) Grid-specific USGS ShakeMap 
ln(VS30) 0.2 for slopes <0.0022, otherwise 0.43 Seyhan and Stewart, 2014 
ln(precip) Assumed 0.4 This study 
ln(dw) Assumed 0 This study 
ln(wtd) Assumed 0.4 This study  
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uncertainty in map form (i.e., grid specific). The standard deviation of ln 
(PGV) is originally from the residual analyses of ground-motion 
modeling and directly provided by the ShakeMap (Worden et al., 
2020). For the remaining geospatial inputs, we make assumptions about 
their uncertainty. The standard deviation of ln(VS30) is assigned based 
on the study of Seyhan and Stewart (2014) which suggest the standard 
deviations of ln(VS30) are 0.2 for the grids with slope gradient <0.0022, 
and 0.4 elsewhere. The standard deviations of ln(precip) and ln(wtd) are 
assumed to be 0.4 based on a conservative interpretation of the source 
documents (Hijmans et al., 2005; Fan et al., 2013). The standard devi-
ation of ln(dw) is assumed to be zero, i.e., considered as deterministic. 
Further studies are warranted to improve these assumptions of geo-
spatial input uncertainty. Interpreting the standard deviation of log- 
transformed variables is not straightforward as it requires understand-
ing how the logarithmic transformation affects the data and how the 
standard deviation measures the variability within that transformed 
data. Here we use the confidence interval method to interpret the 
standard derivation of log-transformed variables. We compute the per-
centage change in the original variable corresponding to the increase or 
decrease of one standard deviation to the log-transformed variable with 
different standard deviations. Given that 68% of the values fall within 
one standard deviation of the mean for random variables with Gaussian 
distribution (i.e., log-transformed variables in this study), the 

abovementioned percentage change indicate the percentage variability 
of original variables at the 68% confidence interval. The percentae 
variability of original variables corresponding to log-transformed vari-
ables with different standard derivations are shown in Fig. 8. For 
instance, ln(precip) has one standard deviation of 0.4 indicating precip 
has 49% percentage variability (i.e., could vary from 51% to 149% from 
the reported value) at the 68% confidence interval. 

4. Sensitivity analysis for GGLM 

The model sensitivity analysis aims to identify the relative contri-
butions of different sources of uncertainty to the model output vari-
ability. This step can guide the forward uncertainty propagation 
presented in Section 5 and future model optimization. 

4.1. Global sensitivity analysis method 

Global sensitivity analysis (GSA) can determine how the uncertainty 
(variance) in the output of a model can be apportioned to different 
sources of uncertainty in the model input (Saltelli et al., 2005). The 
uncertainty sources with a small percentage can be fixed to any value 
within their range (Saltelli et al., 2005). Here we employ the analysis of 
variance (ANOVA) method through Sobol decomposition to investigate 
the sensitivity of GGLM to the three sources of uncertainty quantified in 
the previous section. According to Marelli et al. (2022), the target 
function is decomposed following Eq. (10) for the purpose of variance 
decomposition. 

Fig. 8. Illustrative guide on how to interpret the standard deviation of log- 
transformed variables. This curve shows the percentage variability in the 
original variable (vertical axis) at the 68% confidence interval for the log- 
transformed variable with different standard deviations (horizontal axis). 

Table 6 
Summary of the twelve input variables for the global sensitivity analysis.  

Group Variable Distribution* Sobol index Sum†

Parameter estimation uncertainty Intercept N(6.731,0.067) 0.005 0.01 
wln(PGV) N(0.279,0.003) 0.000  
wln(VS30) N(− 1.459,0.013) 0.007  
wln(precip) N(0.167,0.004) 0.001  
wln(dw) N(− 0.695,0.004) 0.000  
wln(wtd) N(− 0.130,0.003) 0.000  

Modeling error ϵ N(0,0.060) 0.100 0.10 

Geospatial input uncertainty 

ln(PGV) N(2.672, 1.782) 0.295 0.89 
ln(VS30) N(5.724, 0.375) 0.355  
ln(precip) N(6.922, 0.617) 0.013  
ln(dw) N(0.928, 0.591) 0.201  
ln(wtd) N(1.525, 1.427) 0.041   

* N(μ,σ) denotes the Gaussian distribution where μ is the mean and σ is the standard deviation. . 
† Is the ratio of the sum of Sobol’ indices for variables belonging to the same group to the sum of Sobol’ indices for all random variables. 

Table 7 
Input for the forward uncertainty propagation analyses at the two demonstration 
grids.  

ID Grid 1 Grid 2 

Observation Non-liquefaction Liquefaction 
Longitude (◦) − 121.7950 − 122.3122 
Latitude (◦) 36.8600 37.7793 
elevation (m) 13.4 0.0 
slope (◦) 0.0181 0.0001 
PGV (cm/s2) 35.0 28.9 
VS30 (m/s) 355.6 181.7 
precip (mm) 501.5 492.3 
dw (km) 1.7 0.0 
wtd (m) 12.9 0.1 
σln(PGV) 0.44 0.35 
σln(Vs30) 0.43 0.20 
σln(precip) 0.40 0.40 
σln(dw) 0.00 0.00 
σln(wtd) 0.40 0.40 

Note: numbers in italic fonts are generic values assumed for all grids. 
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f (x) = f0 +
∑M

i=1
fi(xi)+

∑

1≤i<j≤M
fij
(
xi, xj

)
+…+ f1,2,…,M(xi,…, xM), (10)  

where f(x) is the target function that can be an arbitrary model (it is the 
close-form logit function in this work); x is the vector of input variables, 
i.e., {xi,…, xM}; f0 is a constant that equals to the expected value of f(x); 
the first-order and second-order summands (i.e., subset functions in Eq. 
10) are defined in Eqs. (11) and (12). The higher-order summands can be 
constructed in an analogous way. 

fi(xi) =

∫ 1

0
…

∫ 1

0
f (x)dx∼i − f0, (11)  

fij
(
xi, xj

)
=

∫ 1

0
…

∫ 1

0
f (x)dx∼(ij) − f0 − fi(xi) − fj

(
xj
)
, (12)  

where the notation ~ indicates that variables are excluded, e.g., x∼i =

{x1,…, xi− 1, xi+1,…, xM}. 
The total variance of f(x) is defined as: 

D =

∫

f 2(x)dx − f 2
0 , (13) 

The partial variances are computed as 

Di1 ,…,is =

∫ 1

0
…

∫ 1

0
f 2
i1 ,…,is (xi1 ,…, xis )dxi1 …dxis , (14)  

where 1 ≤ i1 < … < is ≤ M; s = 1,…,M. The partial variances have the 
property that they sum up to the total variance. 

The sensitivity measures, called Sobol’ indices, are naturally defined 
based on the above variance decomposition results. 

Si1 ,…,is =
Di1 ,…,is

D
, (15)  

which represent the relative contribution of each group of variables 
{xi1 ,…, xis} to the total variance. The index with respect to one input 
variable is called the first-order Sobol’ index and represents the effects of 
xi alone. Multiple-term indices are referred to as higher-order Sobol’ 
indices and account for the interaction effects. The total Sobol’s index of 
input variable xi, denoted as ST

i , is the sum of all the Sobol’ indices 
involving the variable xi. 

ST
i =

∑

{i1 ,…,is}∋i

Si1 ,…,is , (16) 

For the sensitivity analysis of the GGLM, we use the modified logistic 

regression function that adds the model residual to the raw logistic 
regression function (Eq. 17). We consider twelve input variables 
belonging to the three groups of uncertainty sources. The distributions 
of these variables are summarized in Table 6. In this table, the model 
parameters follow Gaussian distribution with parameters estimated by 
the Bayesian inference (Table 1). Modeling error is described using the 
Gaussian distribution with parameters decided by the model residual 
analysis (Section 3.2). The distribution of geospatial input variables for 
the sensitivity analysis uses the Gaussian distribution with the mean and 
standard deviation values determined by dataset (Table 6). The rational 
for these settings is that we want to evaluate the model sensitivity to the 
whole applicable range of input space determined by the whole dataset. 
The Sobol’ indices described in Eqs. (16) are computed using Monte 
Carlo method, as implemented in the UQLab (Marelli and Sudret, 2014). 

P(y = 1) = P(y = 1)+ ϵ =
1

1 + e− Z(x) + ϵ, (17)  

where P(y = 1) is the final liquefaction probability that combines the 
logistic regression estimation and liquefaction probability residual; P(y 
= 1) is the liquefaction probability estimated by the logistic regression 
model; Z(x) is a linear combination of explanatory variables as shown in 
Eq. (2); and ϵ is the liquefaction probability residual as shown in Eq. (9). 

4.2. Global sensitivity analysis results 

The global sensitivity analysis results for the GGLM considering 
twelve uncertain inputs are summarized in Table 6. The parameter 
estimation uncertainty for the GGLM is negligible as it accounts for only 
1% of the total variance. The model errors explain 10% of the total 
variance, and the input variables explain 89% of the total variance. 
Within the group of input variables, ln(VS30) and ln(PGV) show domi-
nant contributions (which explain 65% of the total variance), followed 
by ln(dw) (which explain 20% of the total variance). The other two 
saturation parameters show small contribution to the total variance, 
which implies that they are less important features in the GGLM (Hus-
sain, 2008). It is noted that modeling error may contribute more in some 
regions as the earthquake specific model residuals tend to have larger 
variability (and bias) than the global residual model used here. 

5. Uncertainty propagation for GGLM 

The last step of the UQ framework aims to provide an application of 
the prior uncertainty quantification results to the prediction of the 
natural hazard occurrence through uncertainty propagation. Using 

Fig. 9. Forward uncertainty propagation results for the two demonstration grids: (a) non-liquefaction grid; and (b) liquefaction grid. The blue solid curve is the 
probability density function derived from the histogram of the Monte Carlo Simulation method. The red dashed curve is the Gaussian distribution function of the first- 
order approximation method. The black dashed line is the result of the standard logistic regression. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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forward uncertainty propagation, site-specific and event-specific un-
certainty of different variables can be propagated into the model output. 
The resulting probabilistic outputs can provide more information for 
decision making and risk communication. This section introduces two 
uncertainty propagation methods: Monte Carlo Simulation and an 
approximation method, followed by demonstration calculations at grid 
and region levels for the GGLM. 

5.1. Uncertainty propagation methods 

Forward uncertainty propagation aims to investigate the effects of 
uncertainty sources on the uncertainty of model prediction. We ignore 
parameter estimation uncertainties as their contribution on the vari-
ability of model outputs are negligible as demonstrated in Section 4 and 
summarized in Table 6. Here, we employ two methods to propagate 
modeling errors and geospatial input uncertainties to the prediction of 
liquefaction probability. The first method is the Monte Carlo Simulation 
(MCS) method, in which we independently generate 2000 samples of 

model errors and geospatial inputs based on their probability distribu-
tions and compute 2000 predictions using Eq. (17). The second method 
is a first-order approximation method that aims to mitigate the expen-
sive computational cost of MCS method in regional applications of 
geospatial natural hazard mapping. 

To develop the first-order approximation for the forward uncertainty 
propagation, we assume geospatial proxies (x) are independent 
Gaussian random variables, such that Z is a Gaussian random variable, 
and its mean and standard deviation are computed following Eqs. (18) 
and (19). 

μZ =w0 +w1 × μln(PGV) +w2 × μln(Vs30) +w3 × μln(precip) +w4 × μln(dw)

+w5 × μln(wtd),
(18)  

σ2
Z =w2

1 ×σ2
ln(PGV) +w2

2 ×σ2
ln(Vs30) +w2

3×σ2
ln(precip) +w2

4 ×σ2
ln(dw) +w2

5 ×σ2
ln(wtd),

(19) 

As a result, the liquefaction probability estimated by the logistic 

Fig. 10. Mean value of liquefaction probability in the 1989 Mw 6.9 Loma Prieta Earthquake (California, USA).  
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model is also a Gaussian random variable, and its mean and standard 
deviation as described in Eqs. (20) and (21): 

μP =
1

1 + e− μZ
, (20)  

σP = σZ × μP ×(1 − μP), (21) 

Then, we assume P and ϵ are independent Gaussian random vari-
ables, resulting in P as a Gaussian random variable with mean and 
standard deviation as described in Eqs. (22) and (23): 

μP = μP + μϵ, (22)  

σP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
P + σ2

ϵ

√

, (23)  

5.2. Grid-level demonstration 

To demonstrate and validate the forward uncertainty propagation 

for the GGLM, we use two grids in California that experienced the 1989 
Mw 6.9 Loma Prieta earthquake. The geospatial proxies of the grids are 
shown in Table 7. Grids 1 and 2 are labelled as non-liquefaction and 
liquefaction during this event, respectively. We perform the forward 
uncertainty propagation for the GGLM using both the MCS and 
approximation methods. The forward uncertainty propagation results 
for the two grids are shown in Fig. 9. First, the approximation results 
(red dashed curves) match well with the MCS results (histograms and 
blue solid curves), indicating the correctness of the approximation 
method in propagating the uncertainties. Second, the liquefaction 
probabilities fit a Gaussian distribution with mean value which matches 
the model predictions as the modeling error is zero-mean. The standard 
deviations of liquefaction probabilities can be viewed as the confidence 
on model predictions and vary from grid to grid and event to event as the 
geospatial input proxies vary. This example demonstrates (1) the 
approximation method presented herein has sufficient accuracy for use 
in regional applications, and (2) how different sources of uncertainty 
can be propagated practically for model predictions. 

Fig. 11. Standard deviation of liquefaction probability in the 1989 Mw 6.9 Loma Prieta Earthquake (California, USA) based on the approximation method for 
forward uncertainty propagation. 
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5.3. Region-level demonstration 

To demonstrate region-level application of the approximation 
method for forward uncertainty propagation, we use the 1989 Loma 
Prieta Earthquake. As the MCS is computationally expensive, we use the 
approximation method for the region-level forward uncertainty propa-
gation application. The forward uncertainty propagation is imple-
mented using raster calculations in the ArcGIS platform. The input maps 
for mean values of the five input geospatial proxies are directly down-
loaded from corresponding resources. The input map of the PGV stan-
dard deviation is directly downloaded from the USGS’ ShakeMap. The 
input map for the standard deviation of ln(VS30) is generated based on 
Table 5. The standard deviation for the other four variables (ln(precip), 
ln(dw), ln(wtd), and ϵ) are included as constants. The mean liquefaction 
probability map for the 1989 Loma Prieta earthquake is shown in 
Fig. 10, against the liquefaction observation data (shown as block dots). 
The map for the standard deviation of liquefaction probability is shown 
in Fig. 11. The results suggest that the low-liquefaction-probability areas 
(hills and stiff sites in Fig. 11) have low uncertainty, which implies the 
geospatial model is confident and consistently accurate when predicting 
low liquefaction probability. The uncertainty is higher in high- 
liquefaction-probability areas indicating that there are more mis-
classifications in high-probability regions at the pixel level. Such prob-
abilistic representations of model predictions will enable better risk 
communication and including of hazard in risk calculations. 

6. Summary and conclusions 

Geospatial natural hazard models are widely used in regional hazard 
and risk assessments. The GGLM used herein is a widely used product in 
the USGS earthquake event page communication. However, pervasive 
uncertainty exists in geospatial natural hazard modeling due to natural 
complexity, model imperfection, and geospatial data quality. This study 
provides an uncertainty quantification framework for data-driven geo-
spatial liquefaction hazard models, which includes identifying and 
quantifying different sources of uncertainty, a global sensitivity analysis, 
and forward uncertainty propagation. 

Taking the global geospatial liquefaction hazard model as a 
demonstration, we quantify the parameter estimation uncertainty using 
the Bayesian inference. Parameter estimation uncertainty is found to be 
negligible for the GGLM due to the large dataset used in model devel-
opment. A novel residual analysis method is proposed to quantify the 
modeling error in terms of liquefaction probability residuals. A condi-
tional global residual model is proposed to describe the residual trend 
based on the aggregate analysis of the global dataset. A similar residual 
analysis is applied to event-specific data and identifies event-specific 
patterns of model bias and variance. The global sensitivity analyses 
consider twelve factors belonging to the three uncertainty sources. The 
results suggest the geospatial input uncertainty contributes most to the 
model output variability (89%), followed by the modeling error (10%). 
The contribution of parameter estimation uncertainty is negligible (1%). 
Three geospatial factors within the group of geospatial input uncer-
tainty, ln(VS30), ln(PGV), and ln(dw), show dominant effects on model 
output (contributing to 85% of the total variance), which implies they 
should be used as the primary input features for geospatial liquefaction 
hazard modeling. 

We demonstrate a computationally efficient first-order approxima-
tion method for forward uncertainty propagation which provides simi-
larly accurate results as compared to MCS forward uncertainty 
propagation which is significantly more computationally intensive. 
When applied to the region-scale, the forward uncertainty propagation 
results in probabilistic estimations of liquefaction occurrence, which 
could convey additional information about the expected confidence in 
model outputs as well as risk models and risk communication. In sum-
mary, the UQ framework in this paper can provide the expected un-
certainty on the model output and can be implemented to different types 

and classes of data-driven geospatial natural hazard models. 
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